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Preface
The newly revised fourth edition of our Building Java Programs textbook is
designed for use in a two-course introduction to computer science. We have
class-tested it with thousands of undergraduates, most of whom were not
computer science majors, in our CS1-CS2 sequence at the University of
Washington. These courses are experiencing record enrollments, and other
schools that have adopted our textbook report that students are succeeding
with our approach.

Introductory computer science courses are often seen as “killer” courses with
high failure rates. But as Douglas Adams says in The Hitchhiker's Guide to
the Galaxy, “Don't panic.” Students can master this material if they can learn
it gradually. Our textbook uses a layered approach to introduce new syntax
and concepts over multiple chapters.

Our textbook uses an “objects later” approach where programming
fundamentals and procedural decomposition are taught before diving into
object-oriented programming. We have championed this approach, which we
sometimes call “back to basics,” and have seen through years of experience
that a broad range of scientists, engineers, and others can learn how to
program in a procedural manner. Once we have built a solid foundation of
procedural techniques, we turn to object-oriented programming. By the end
of the course, students will have learned about both styles of programming.

Here are some of the changes that we have made in the fourth edition:

New chapter on functional programming with Java 8. As explained
below, we have introduced a chapter that uses the new language features
available in Java 8 to discuss the core concepts of functional
programming.

New section on images and 2D pixel array manipulation. Image
manipulation is becoming increasingly popular, so we have expanded
our DrawingPanel class to include features that support manipulating



images as two-dimensional arrays of pixel values. This extra coverage
will be particularly helpful for students taking an AP/CS A course
because of the heavy emphasis on two-dimensional arrays on the AP
exam.

Expanded self-checks and programming exercises. Many chapters have
received new self-check problems and programming exercises. There
are roughly fifty total problems and exercises per chapter, all of which
have been class-tested with real students and have solutions provided for
instructors on our web site.

Since the publication of our third edition, Java 8 has been released. This new
version supports a style of programming known as functional programming
that is gaining in popularity because of its ability to simply express complex
algorithms that are more easily executed in parallel on machines with
multiple processors. ACM and IEEE have released new guidelines for
undergraduate computer science curricula, including a strong
recommendation to cover functional programming concepts.

We have added a new Chapter 19 that covers most of the functional concepts
from the new curriculum guidelines. The focus is on concepts, not on
language features. As a result, it provides an introduction to several new Java
8 constructs but not a comprehensive coverage of all new language features.
This provides flexibility to instructors since functional programming features
can be covered as an advanced independent topic, incorporated along the
way, or skipped entirely. Instructors can choose to start covering functional
constructs along with traditional constructs as early as Chapter 6. See the
dependency chart at the end of this section.

The following features have been retained from previous editions:

Focus on problem solving. Many textbooks focus on language details
when they introduce new constructs. We focus instead on problem
solving. What new problems can be solved with each construct? What
pitfalls are novices likely to encounter along the way? What are the most
common ways to use a new construct?

Emphasis on algorithmic thinking. Our procedural approach allows us to



emphasize algorithmic problem solving: breaking a large problem into
smaller problems, using pseudocode to refine an algorithm, and
grappling with the challenge of expressing a large program
algorithmically.

Layered approach. Programming in Java involves many concepts that
are difficult to learn all at once. Teaching Java to a novice is like trying
to build a house of cards. Each new card has to be placed carefully. If
the process is rushed and you try to place too many cards at once, the
entire structure collapses. We teach new concepts gradually, layer by
layer, allowing students to expand their understanding at a manageable
pace.

Case studies. We end most chapters with a significant case study that
shows students how to develop a complex program in stages and how to
test it as it is being developed. This structure allows us to demonstrate
each new programming construct in a rich context that can't be achieved
with short code examples. Several of the case studies were expanded
and improved in the second edition.

Utility as a CS1+CS2 textbook. In recent editions, we added chapters
that extend the coverage of the book to cover all of the topics from our
second course in computer science, making the book usable for a two-
course sequence. Chapters 12–19 explore recursion, searching and
sorting, stacks and queues, collection implementation, linked lists,
binary trees, hash tables, heaps, and more. Chapter 12 also received a
section on recursive backtracking, a powerful technique for exploring a
set of possibilities for solving problems such as 8 Queens and Sudoku.

Layers and Dependencies
Many introductory computer science books are language-oriented, but the
early chapters of our book are layered. For example, Java has many control
structures (including for-loops, while-loops, and if/else-statements), and
many books include all of these control structures in a single chapter. While
that might make sense to someone who already knows how to program, it can



be overwhelming for a novice who is learning how to program. We find that
it is much more effective to spread these control structures into different
chapters so that students learn one structure at a time rather than trying to
learn them all at once.

The following table shows how the layered approach works in the first six
chapters:

Chapter Control
Flow Data Programming

Techniques Input/Output

1 methods String literals procedural
decomposition println, print

2
definite
loops
(for)

variables,
expressions,
int, double

local variables, class
constants,
pseudocode

3 return
values using objects parameters

console input, 2D
graphics
(optional)

4 conditional
(if/else)

char
pre/post conditions,
throwing exceptions

printf

5
indefinite
loops
(while)

boolean
assertions, robust
programs

6 Scanner
token/line-based file
processing file I/O

Chapters 1–6 are designed to be worked through in order, with greater
flexibility of study then beginning in Chapter 7. Chapter 6 may be skipped,
although the case study in Chapter 7 involves reading from a file, a topic that
is covered in Chapter 6.

The following is a dependency chart for the book:





Supplements
http://www.buildingjavaprograms.com/

Answers to all self-check problems appear on our web site and are accessible
to anyone. Our web site has the following additional resources for students:

Online-only supplemental chapters, such as a chapter on creating
Graphical User Interfaces

Source code and data files for all case studies and other complete
program examples

The DrawingPanel class used in the optional graphics Supplement 3G

Our web site has the following additional resources for teachers:

PowerPoint slides suitable for lectures

Solutions to exercises and programming projects, along with homework
specification documents for many projects

Sample exams and solution keys

Additional lab exercises and programming exercises with solution keys

Closed lab creation tools to produce lab handouts with the instructor's
choice of problems integrated with the textbook

To access protected instructor resources, contact us at
authors@buildingjavaprograms.com. The same materials are also available at
http://www.pearsonhighered.com/cs-resources. To receive a password for this
site or to ask other questions related to resources, contact your Pearson sales
representative.

MyProgrammingLab



MyProgrammingLab is an online practice and assessment tool that helps
students fully grasp the logic, semantics, and syntax of programming.
Through practice exercises and immediate, personalized feedback,
MyProgrammingLab improves the programming competence of beginning
students who often struggle with basic concepts and paradigms of popular
high-level programming languages. A self-study and homework tool, the
MyProgrammingLab course consists of hundreds of small practice exercises
organized around the structure of this textbook. For students, the system
automatically detects errors in the logic and syntax of code submissions and
offers targeted hints that enable students to figure out what went wrong, and
why. For instructors, a comprehensive grade book tracks correct and
incorrect answers and stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to
adopt MyProgrammingLab for your course, visit the following web site:
http://www.myprogramminglab.com/

VideoNotes

We have recorded a series of instructional videos to accompany the textbook.
They are available at the following web site: www.pearsonhighered.com/cs-
resources

Roughly 3–4 videos are posted for each chapter. An icon in the margin of the
page indicates when a VideoNote is available for a given topic. In each video,
we spend 5–15 minutes walking through a particular concept or problem,
talking about the challenges and methods necessary to solve it. These videos
make a good supplement to the instruction given in lecture classes and in the
textbook. Your new copy of the textbook has an access code that will allow
you to view the videos.
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Break through
To Improving results

MyProgammingLab™
Through the power of practice and immediate personalized feedback,
MyProgrammingLab helps improve your students' performance.

Programming Practice
With MyProgrammingLab, your students will gain firs-hand programming
experience in an interactive online environment.

Immediate, Personalized Feedback
MyProgrammingLab automatically detects errors in the logic and syntax of
their code submission and offers targeted hints that enables students to figure
out what went wrong and why.

Graduated Complexity
MyProgrammingLab breaks down programming concepts into short,
understandable sequences of exercises. Within each sequence the level and
sophistication of the exercises increase gradually but steadily.



Dynamic Roster
Students' submissions are stored in a roster that indicates whether the
submission is correct, how many attempts were made, and the actual code
submissions from each attempt.

Pearson eText
The Pearson eText gives students access to their textbook anytime, anywhere

Step-By-Step Videonote Tutorials
These step-by-step video tutorials enhance the programming concepts
presented in select Pearson textbooks.



For more information and titles available with MyProgrammingLab, please
visit www.myprogramminglab.com.
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